Architecture of Learning

Inside: Net-Zero Energy Building at the School of Design and Environment – Singapore | Crafting Pedagogy, Outside the Classroom – A Look at Experiential Learning | Mike Guerrero – Principal, Asian Architects; Chairman, Green Architecture Advocacy Philippines | Works of Morphogenesis, Hijjas Kasturi, Hoang Thuc Hao

With projects from Australia, Cambodia, China, Denmark, India, Indonesia, Kyrgyz Republic, Malaysia, Singapore, and Vietnam

SPECIAL DISCOUNT FOR STUDENTS—SEE INSIDE FOR DETAILS!
Contextually responding to its harsh local microclimate, the project was conceived to fortify itself from the external environment and create a relevant oasis-like internal environment. This resulted in the inward-looking morphology with a high thermal mass on the outer faces that blocks out the hot winds prevalent in the region.

This building provides student accommodation and support facilities within an existing educational campus. Students are housed predominantly in an apartment format where units are placed along the external periphery to maximise daylight opening to an internal central corridor system. The project is designed to have a high wall to window ratio, furthermore to thermally buffering each unit and reducing solar gain from the façade of the building, toilet shafts are moved to the exterior faces of each unit. Deep recessed windows provide shade and help in controlling optimum daylighting.

Spatial planning was done in order to engage the students, generating various interactive conglomerate spaces, each having its own identity within the overall community yet satisfying institutional/residential requirements. The campus is configured in a multi-bulding format with a street pattern in grid to generate the built volumes. Courtyards are introduced and cores are identified by carving out voids at different levels to create a multitude of open spaces in the form of terrace gardens and cores of varying size and configurations for multifunctional interactions, creating a miniature urban landscape. The buildings are oriented in a manner such that they open inwards while presenting a largely solid façade to the outside.

Each residential block is planned on a traditionally inspired compact urban building format of a chawl (a large residential building of typically four to five storeys with many separate tenements that share a common building) in a chawl consists of one or more rooms that function both as living and sleeping space, and a kitchen that also serves as a dining room. The courtyards and terraces encourage interaction among neighbours and the visual connection with the street creates a vibrant community atmosphere.

1 A brick façade blocks out hot winds and create a cooler interior
Street canyons provide shading without obstructing natural ventilation and daylight.

- **Inferences:**
 - **Passive street canyons:** The 12-metre street canyon provides shading without obstructing natural ventilation and daylight.
 - **Urban streetscape:** Created by visually connecting spaces at different levels.
 - All above-level terraces gifted to open onto the street to generate the urban streetscape.

- **Features:**
 - Final block model
 - The built-to-open ratio has been maintained at 33%.
 - The compact form generated reduces heat gain and loss.
 - First floor terrace garden introduced.
 - Entrance to the block.
 - Final block model.
 - The built-to-open ratio has been maintained at 33%.
 - The compact form generated reduces heat gain and loss.

Microclimate: morphology

- **Type 1:**
 - Final block model.
 - The built-to-open ratio has been maintained.
 - The compact form generated reduces heat gain and loss.
 - First floor terrace garden introduced.
 - Core identified.

- **Type 2:**
 - Courtyard introduced.
 - Core identified.
 - First floor terrace garden introduced.
 - Balance to the block.

Morphogenesis

- **Type 1:**
 - Final block model.
 - The built-to-open ratio has been maintained.
 - The compact form generated reduces heat gain and loss.

- **Type 2:**
 - Courtyard introduced.
 - Core identified.
 - First floor terrace garden introduced.
 - Balance to the block.

FLOOR PLATE ANALYSIS

- **LEGEND**
 - CORE
 - CORRIDOR
 - BUILT MASS AREA DEDUCTED

MODULE ANALYSIS

- **LEGEND**
 - 3-BEDROOM TYPE A
 - 3-BEDROOM TYPE B
 - 2-BEDROOM
Education in India takes a typically socialist approach and must be made available to all, and hence needs to be affordable. The architects took this opportunity to address affordability in this project through resource optimisation strategies and passive design to reduce both the capital and operational costs.

In terms of materiality, bricks are commonly used in the construction of educational institutes and other buildings in the region and thus, they were the material of choice for the project. Using bricks as the primary façade material was also an exercise in resource optimisation by serving the dual purpose of creating a high performance and low maintenance façade that weathered well in this harsh climate. The façades were designed as the interface between the interior conditioned space and the outside environment, and act as insulators and light filters to control and modulate inside conditions. The use of brick jaalis and other simple finishes helps to maintain a simplistic material palette.

The project uses passive strategies such as courtyard planning and earth banks to create a microclimate. These subterranean landscape areas are articulated with water features and seating spaces to enhance student use. The design addresses fragility, adaptability and resourcefulness by also ensuring that all materials are sourced from within 500 kilometres of the site.

A decentralised solar water heating system is used to fulfil 100 percent of the hot water requirement. Solar panels are placed on each terrace top, facing the south side to receive maximum sunlight. A sewage treatment plant in the basement is used to treat waste water and reuse water for flushing, gardening and water bodies. The rainwater harvesting system uses a rainwater pipe detention tank to collect and treat water from the terraces and recirculate within the system. The system also collects water on the ground to discharge into the municipal storm water drain.

The entire project is net-zero enabled and when future budgetary allowances permit, the campus may go off the city grid for all its power requirements.